References

  1. Gueddes, N. B. (1940). Magic Motorways. Random House.
  2. Brown, M. (2011). Racecar - Searching for the Limit in Formula SAE. Seven Car.
  3. Morgado, D. (2021). A Perception Pipeline for an Autonomous Formula Student Vehicle [MSc Thesis in Mechanical Engineering]. Universidade de Lisboa - Instituto Superior Técnico.
  4. Gomes, D. R., Botto, M. A., & Lima, P. U. (2024). Learning-based Model Predictive Control for an Autonomous Formula Student Racing Car [Master's thesis, Universidade de Lisboa - Instituto Superior Técnico]. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 12556–12562). https://ieeexplore.ieee.org/abstract/document/10611285
  5. Jose, C. P. (2016). A review on the trends and developments in hybrid electric vehicle. Innovative Design and Development Practices in Aerospace and Automotive Engineering: I-DAD, 211–229. https://link.springer.com/chapter/10.1007/978-981-10-1771-1_25
  6. Stanchev, P., & Geske, J. (2016). Autonomous Cars. History. State of Art. Research Problems. DCCN 2015, 1–10. https://link.springer.com/chapter/10.1007/978-3-319-30843-2_1
  7. Aggarwal, I. (2022). Rise of Autonomous Vehicles. International Journal of Social Science and Economic Research, 7(10). https://ijsser.org/2022files/ijsser_07__229.pdf
  8. Brummelen, J. V., O’Brien, M., Gruyerb, D., & Najjaran, H. (2018). Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research: Part C, 89: 384–406. https://www.sciencedirect.com/science/article/pii/S0968090X18302134
  9. of Automotive Engineers, S. (2022). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. J3016_202104. https://www.sae.org/standards/content/j3016_202104/
  10. Betz, J., Zheng, H., Liniger, A., Rosolia, U., Karle, P., Behl, M., Krovi, V., & Mangharam, R. (2022). Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing. IEEE Open Journal of Intelligent Transportation Systems, 3: 458–488. https://ieeexplore.ieee.org/abstract/document/9790832
  11. Fayyad, J., Jaradat, M. A., Gruyer, D., & Najjaranngharam, H. (2022). Deep Learning Sensor Fusion: Vehicle Perception and Localization: A Review. Sensors, 20. https://www.mdpi.com/1424-8220/20/15/4220
  12. Jeffs, J., & He, M. X. (2023). Autonomous Cars, Robotaxis and Sensors 2024-2044. IDTechEx. https://www.idtechex.com/en/research-report/autonomous-cars-robotaxis-and-sensors-2024-2044/953
  13. Ackerman, E. (2021). What Full Autonomy Means for the Waymo Driver. IEE Spectrum. https://spectrum.ieee.org/full-autonomy-waymo-driver
  14. Betz, J., & al., E. (2019). What can we learn from autonomous level-5 motorsport? Springer. https://link.springer.com/content/pdf/10.1007/978-3-658-22050-1_12.pdf
  15. Barrachina, J., & al., E. (2013). V2X-d: A vehicular density estimation system that combines V2V and V2I communications. IFIP Wireless Days (WD). https://ieeexplore.ieee.org/document/6686518
  16. Dhall, A., Dai, D., & Gool, L. V. (2019). Real-time 3D Traffic Cone Detection for Autonomous Driving. IEEE Intelligent Vehicles Symposium. https://ieeexplore.ieee.org/document/8814089/
  17. Wen, L., & Jo, K. (2022). Deep learning-based perception systems for autonomous driving: A comprehensive survey. Neuralcomputing. https://doi.org/10.1016/j.neucom.2021.08.155
  18. Rusu, R. B., & Cousins, S. (2011). 3d is here: Point Cloud Library (PCL). IEEE International Conference on Robotics And Automation. https://ieeexplore.ieee.org/document/5980567
  19. Nguyen, A., & Jo, K. (2013). 3D Point Cloud Segmentation: A survey. IEEE Conference on Robotics, Automation and Mechatronics. https://ieeexplore.ieee.org/document/6758588
  20. Liu, W., Sun, J., Li, W., Hu, T., & Wang, P. (2019). Deep Learning on Point Clouds and Its Application: A Survey. Sensors. https://www.mdpi.com/1424-8220/19/19/4188
  21. Zhang, J., Zhao, X., & Lu, Z. (2019). A Review of Deep Learning-Based Semantic Segmentation for Point Cloud. IEEE Access. https://ieeexplore.ieee.org/abstract/document/8930503/
  22. Grilli, E., Menna, F., & Remondino, F. (2017). A Review of Point Clouds Segmentation and Classification Algorithms. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. https://isprs-archives.copernicus.org/articles/XLII-2-W3/339/2017/
  23. Bhanu, B., Lee, S., Ho, C., & Henderson, T. (1986). Range data processing: Representation of surfaces by edges. Pattern Recognition. https://core.ac.uk/download/pdf/276277383.pdf
  24. Sappa, A., & M.Devy. (2001). Fast range image segmentation by an edge detection strategy. 3D Digital Imaging and Modeling. https://ieeexplore.ieee.org/abstract/document/924460
  25. Jiang, X. Y., Bunke, H., & Meier, U. (1996). Fast range image segmentation. Third IEEE. https://ieeexplore.ieee.org/document/572006/
  26. Bello, S. A., & al, E. (2020). Review: Deep Learning on 3D Point Clouds. Remote Sensing. https://www.mdpi.com/2072-4292/12/11/1729
  27. Cheri, A., & Mouftah, H. T. (2019). Autonomous vehicles in the sustainable cities, the beginning of a green adventure. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2019.101751
  28. Srivastava, A. (2019). Sense-Plan-Act in Robotic Applications. DOI, 10: 3.
  29. Dingus, T. D., & al, E. (2016). Driver crash risk factors and prevalence evaluation using driving data. Proceedings of the National Academy of Sciences. https://www.pnas.org/doi/abs/10.1073/pnas.1513271113
  30. Gosala, N., & al., E. (2019). Redundant Perception and State Estimation for Reliable Autonomous Racing. 2019 International Conference on Robotics and Automation (ICRA). https://ieeexplore.ieee.org/document/8794155
  31. Valls, M., & al., E. (2018). Design of an Autonomous Racecar: Perception, State Estimation and System Integration. 2018 IEEE ICRA. https://ieeexplore.ieee.org/document/8462829
  32. Hudson, J., Orviska, M., & Hunady, J. (2019). People’s attitudes to autonomous vehicles. Transportation Research Part A: Policy and Practice, 121: 164–176. https://doi.org/10.1016/j.tra.2018.08.018
  33. Betz, J., & al., E. (2023). Tum autonomous motorsport: An autonomous racing software for the indy autonomous challenge. Journal of Field Robotics, 40(4), 783–809. https://doi.org/10.1002/rob.22153
  34. Vödisch, N., Dodel, D., & Schötz, M. (2022). FSOCO: The Formula Student Objects in Context Dataset. SAE International Journal of Connected and Automated Vehicles, 5. https://arxiv.org/abs/2012.07139
  35. LLC, W. (2021). On the road to fully self-driving. Waymo Safety Report (pp. 1–48).
  36. O’Kelly, M., Zheng, H., Karthik, D., & Mangharam, R. (2020). F1TENTH: An Open-source Evaluation Environment for Continuous Control and Reinforcement Learning. Proceedings of ML Research, 123. https://par.nsf.gov/biblio/10221872
  37. Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K. (2020). A survey of autonomous driving: Common practices and emerging technologies. IEEE Access, 8, 58443–58469. https://ieeexplore.ieee.org/abstract/document/9046805
  38. Hulse, L. M., Xie, H., & Galea, E. R. (2018). Relationships with road users, risk, gender and age. Safety Science, 102, 1–13. https://www.sciencedirect.com/science/article/pii/S0925753517306999
  39. Montgomery, W., & al., E. (2018). Realizing productivity gains and spurring economic growth. America’s Workforce and the Self-Driving Future. https://avworkforce.secureenergy.org/
  40. Singh, S. (2015). Critical reasons for crashes investigated in the national motor vehicle crash causation survey. National Highway Traffic Safety Administration. http://www-nrd.nhtsa.dot.gov/Pubs/812115.pdf
  41. FSG. (2023). FS Rules 2024. https://www.formulastudent.de/fsg/rules/
  42. FSG. (2023). FS Handbook 2024. https://www.formulastudent.de/fsg/rules/
  43. Arnold, E., Al-Jarrah, O. Y., & al., E. (2019). A survey on 3d object detection methods for autonomous driving applications. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3782–3795. https://ieeexplore.ieee.org/abstract/document/8621614
  44. Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11), 1231–1237. https://journals.sagepub.com/doi/full/10.1177/0278364913491297
  45. Liang, W., Xu, P., Guo, L., Bai, H., Zhou, Y., & Chen, F. (2021). A survey of 3D object detection. Multimedia Tools and Applications, 80(19), 29617–29641. https://link.springer.com/article/10.1007/s11042-021-11137-y
  46. Qian, R., Lai, X., & Li, X. (2022). 3D object detection for autonomous driving: A survey. Pattern Recognition, 130, 108796. https://www.sciencedirect.com/science/article/pii/S0031320322002771
  47. Mao, J., Shi, S., Wang, X., & Li, H. (2023). 3D object detection for autonomous driving: A comprehensive survey. International Journal of Computer Vision, 131(8), 1909–1963. https://link.springer.com/article/10.1007/s11263-023-01790-1
  48. Wang, Y., Mao, Q., & al., E. (2023). Multi-modal 3d object detection in autonomous driving: a survey. International Journal of Computer Vision, 131(8), 2122–2152. https://link.springer.com/article/10.1007/s11263-023-01784-z
  49. Nagiub, A. S., Fayez, M., Khaled, H., & Ghoniemy, S. (2024). 3D object detection for autonomous driving: a comprehensive review. 2024 6th International Conference on Computing and Informatics (ICCI), 01–11. https://ieeexplore.ieee.org/abstract/document/10485120
  50. Calvo, E. L., Taveira, B., Kahl, F., Gustafsson, N., Larsson, J., & Tonderski, A. (2023). Timepillars: Temporally-recurrent 3d lidar object detection. ArXiv Preprint ArXiv:2312.17260. https://arxiv.org/abs/2312.17260
  51. Xuan, Y., & Qu, Y. (2024). Multimodal Data Fusion for BEV Perception. Master Thesis. https://odr.chalmers.se/items/589548c4-f439-4c12-ac16-6d74884ec41b
  52. Vaswani, A., & al., E. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
  53. Dosovitskiy, A., & al., E. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv Preprint ArXiv:2010.11929. https://arxiv.org/pdf/2010.11929/1000
  54. Chi, C., Wei, F., & Hu, H. (2020). Relationnet++: Bridging visual representations for object detection via transformer decoder. Advances in Neural Information Processing Systems, 33, 13564–13574. https://arxiv.org/abs/2010.15831
  55. Gao, W., & Li, G. (2025). Deep learning for 3D point clouds. Springer. https://link.springer.com/content/pdf/10.1007/978-981-97-9570-3.pdf
  56. Alhardi, A., & Afeef, M. A. (2024). Object Detection Algorithms & Techniques. 4th International Conference on Innovative Academic Studies.
  57. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. MIT press Cambridge.
  58. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://dl.acm.org/doi/abs/10.1145/3065386
  59. Moutinho, A. (2022). Computer Vision Slides. Instituto Superior Técnico.
  60. Li, K., & Cao, L. (2020). A review of object detection techniques. 2020 5th International Conference on ICECTT, 385–390. https://ieeexplore.ieee.org/abstract/document/9237557
  61. Ng, A. (2016). What artificial intelligence can and can’t do right now. Harvard Business Review, 9(11).
  62. Turk, G., & Levoy, M. (1994). Zippered polygon meshes from range images. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. https://dl.acm.org/doi/abs/10.1145/192161.192241
  63. Lin, H., Wang, L., Qu, X., & others. (2025). A High-Precision Calibration and Evaluation Method Based on Binocular Cameras and LiDAR for Intelligent Vehicles. IEEE Transactions on Vehicular Technology.
  64. Zhang, H., & al., E. (2025). 3D LiDAR and monocular camera calibration: A Review. IEEE Sensors Journal. https://ieeexplore.ieee.org/abstract/document/10852582
  65. Huch, H. C. S. (2025). LiDAR Domain Adaptation for Perception of Autonomous Vehicles [PhD thesis, Technische Universität München]. https://mediatum.ub.tum.de/1748697
  66. Garcia, G. M., & al., E. (2025). Fine-tuning image-conditional diffusion models is easier than you think. 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 753–762. https://arxiv.org/abs/2409.11355
  67. Yang, L., Kang, B., & al., E. (2024). Depth anything: Unleashing the power of large-scale unlabeled data. Proceedings of the IEEE/CVF Conference on CVPR, 10371–10381. https://arxiv.org/abs/2401.10891
  68. Yang, L., Kang, B., & al., E. (2024). Depth anything v2. Advances in Neural Information Processing Systems, 37, 21875–21911. https://arxiv.org/abs/2406.09414
  69. Peris, M., Martull, S., Maki, A., Ohkawa, Y., & Fukui, K. (2012). Towards a simulation driven stereo vision system. Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 1038–1042. https://ieeexplore.ieee.org/abstract/document/6460313
  70. Li, H., Zhao, Y., Zhong, J., Wang, B., Sun, C., & Sun, F. (2025). Delving into the Secrets of BEV 3D Object Detection in Autonomous Driving: A Comprehensive Survey. Authorea Preprints. https://www.techrxiv.org/doi/full/10.36227/techrxiv.173221675.59410416
  71. Caesar, H., Bankiti, V., & al., E. (2020). nuscenes: A multimodal dataset for autonomous driving. Proceedings of the IEEE/CVF Conference on CVPR, 11621–11631. https://arxiv.org/abs/1903.11027
  72. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., & others. (2020). Scalability in perception for autonomous driving: Waymo open dataset. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2446–2454. https://arxiv.org/abs/1912.04838
  73. Zamanakos, G., Tsochatzidis, L., Amanatiadis, A., & Pratikakis, I. (2021). A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving. Computers & Graphics, 99, 153–181. https://www.sciencedirect.com/science/article/pii/S0097849321001321
  74. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems.
  75. Block, H.-D. (1962). The perceptron: A model for brain functioning. i. Reviews of Modern Physics, 34(1), 123.
  76. Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 652–660. https://arxiv.org/abs/1612.00593
  77. Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems, 30. https://arxiv.org/abs/1706.02413
  78. Lai-Dang, Q.-V. (2024). A survey of vision transformers in autonomous driving: Current trends and future directions. ArXiv Preprint ArXiv:2403.07542. https://arxiv.org/abs/2403.07542
  79. Chang, M.-F., & al., E. (2019). Argoverse: 3d tracking and forecasting with rich maps. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8748–8757. https://arxiv.org/abs/1911.02620
  80. Patil, A., Malla, S., Gang, H., & Chen, Y.-T. (2019). The h3d dataset for full-surround 3d multi-object detection and tracking in crowded urban scenes. 2019 International Conference on Robotics and Automation (ICRA), 9552–9557. https://arxiv.org/abs/1903.01568
  81. Houston, J., & al., E. (2021). One thousand and one hours: Self-driving motion prediction dataset. Conference on Robot Learning, 409–418. https://proceedings.mlr.press/v155/houston21a.html
  82. Wang, P., & al., E. (2019). The apolloscape open dataset for autonomous driving and its application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1.
  83. Kuznetsova, A., Rom, H., Alldrin, N., & others. (2020). The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. International Journal of Computer Vision, 128(7), 1956–1981. https://arxiv.org/abs/1811.00982z
  84. Russakovsky, O., Deng, J., Su, H., & and others. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211–252. https://arxiv.org/abs/1409.0575
  85. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88, 303–338. https://link.springer.com/article/10.1007/S11263-009-0275-4
  86. Lin, T.-Y., & al., E. (2014). Microsoft coco: Common objects in context. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part v 13, 740–755. https://arxiv.org/abs/1405.0312
  87. Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference from rgbd images. Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, 746–760. https://link.springer.com/chapter/10.1007/978-3-642-33715-4_54
  88. Pravallika, A., Hashmi, M. F., & Gupta, A. (2024). Deep Learning Frontiers in 3D Object Detection: A Comprehensive Review for Autonomous Driving. IEEE Access. https://ieeexplore.ieee.org/abstract/document/10670385/
  89. Zhu, M., Gong, Y., Tian, C., & Zhu, Z. (2024). A Systematic Survey of Transformer-Based 3D Object Detection for Autonomous Driving: Methods, Challenges and Trends. Drones, 8(8), 412. https://www.mdpi.com/2504-446X/8/8/412
  90. Bhat, S. F., Alhashim, I., & Wonka, P. (2021). Adabins: Depth estimation using adaptive bins. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4009–4018. https://openaccess.thecvf.com/content/CVPR2021/html/Bhat_AdaBins_Depth_Estimation_Using_Adaptive_Bins_CVPR_2021_paper.html
  91. He, X., & al., E. (2025). Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator. ArXiv Preprint ArXiv:2502.19204. https://arxiv.org/abs/2502.19204
  92. Fu, H., & al., E. (2018). Deep ordinal regression network for monocular depth estimation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2002–2011. https://openaccess.thecvf.com/content_cvpr_2018/html/Fu_Deep_Ordinal_Regression_CVPR_2018_paper.html
  93. Ranftl, R., & al., E. (2020). Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(3), 1623–1637. https://ieeexplore.ieee.org/abstract/document/9178977
  94. Ranftl, R., Bochkovskiy, A., & Koltun, V. (2021). Vision transformers for dense prediction. Proceedings of the IEEE/CVF International Conference on Computer Vision, 12179–12188. https://openaccess.thecvf.com/content/ICCV2021/html/Ranftl_Vision_Transformers_for_Dense_Prediction_ICCV_2021_paper.html
  95. Li, Z., Chen, Z., Liu, X., & Jiang, J. (2023). Depthformer: Exploiting long-range correlation and local information for accurate monocular depth estimation. Machine Intelligence Research, 20(6), 837–854. https://link.springer.com/article/10.1007/s11633-023-1458-0]
  96. Yin, W., & al., E. (2023). Metric3d: Towards zero-shot metric 3d prediction from a single image. Proceedings of the IEEE/CVF International Conference on Computer Vision, 9043–9053. https://openaccess.thecvf.com/content/ICCV2023/html/Yin_Metric3D_Towards_Zero-shot_Metric_3D_Prediction_from_A_Single_Image_ICCV_2023_paper.html
  97. Bhat, S. F., & al., E. (2023). Zoedepth: Zero-shot transfer by combining relative and metric depth. ArXiv Preprint ArXiv:2302.12288.
  98. Ke, B., Obukhov, A., & al., E. (2024). Repurposing diffusion-based image generators for monocular depth estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9492–9502. https://openaccess.thecvf.com/content/CVPR2024/html/Ke_Repurposing_Diffusion-Based_Image_Generators_for_Monocular_Depth_Estimation_CVPR_2024_paper.html
  99. Piccinelli, L., Yang, Y.-H., & al., E. (2024). UniDepth: Universal monocular metric depth estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10106–10116.
  100. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110.
  101. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. ArXiv Preprint ArXiv:1312.6229. https://arxiv.org/abs/1312.6229
  102. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on CVPR, 779–788. https://arxiv.org/abs/1506.02640
  103. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, 21–37. https://arxiv.org/abs/1512.02325
  104. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE CVPR, 580–587. https://arxiv.org/abs/1311.2524
  105. Purkait, P., Zhao, C., & Zach, C. (2017). SPP-Net: Deep absolute pose regression with synthetic views. ArXiv Preprint ArXiv:1712.03452. https://arxiv.org/abs/1712.03452
  106. Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision, 1440–1448. https://arxiv.org/abs/1504.08083
  107. Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. https://arxiv.org/abs/1506.01497
  108. Wu, X., Sahoo, D., & Hoi, S. C. H. (2020). Recent advances in deep learning for object detection. Neurocomputing, 396, 39–64. https://www.sciencedirect.com/science/article/pii/S0925231220301430
  109. Pagire, V., Chavali, M., & Kale, A. (2025). A comprehensive review of object detection with traditional and dl methods. Signal Processing, 237, 110075. https://www.sciencedirect.com/science/article/pii/S0165168425001896
  110. Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20 years: A survey. Proceedings of the IEEE, 111(3), 257–276. https://ieeexplore.ieee.org/abstract/document/10028728
  111. Sun, Y., Sun, Z., & Chen, W. (2024). The evolution of object detection methods. Engineering Applications of Artificial Intelligence, 133, 108458. https://www.sciencedirect.com/science/article/pii/S095219762400616X
  112. Chen, W., Li, Y., Tian, Z., & Zhang, F. (2023). 2D and 3D object detection algorithms from images: A Survey. Array, 19, 100305. https://www.sciencedirect.com/science/article/pii/S2590005623000309
  113. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. European Conference on Computer Vision, 213–229. https://arxiv.org/abs/2005.12872
  114. Zong, Z., Song, G., & Liu, Y. (2023). Detrs with collaborative hybrid assignments training. Proceedings of the IEEE/CVF International Conference on Computer Vision, 6748–6758. https://arxiv.org/abs/2211.12860
  115. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable detr: Deformable transformers for end-to-end object detection. ArXiv Preprint ArXiv:2010.04159. https://arxiv.org/abs/2010.04159
  116. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., & others. (2023). Dinov2: Learning robust visual features without supervision. ArXiv Preprint ArXiv:2304.07193. https://arxiv.org/abs/2304.07193
  117. Dai, J., Li, Y., He, K., & Sun, J. (2016). R-fcn: Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems, 29. https://arxiv.org/abs/1605.06409
  118. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the IEEE International Conference on Computer Vision, 2961–2969. https://arxiv.org/abs/1703.06870l
  119. Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6154–6162. https://arxiv.org/abs/1712.00726
  120. Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision, 2980–2988. https://arxiv.org/abs/1708.02002
  121. Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired keypoints. Proceedings of the European Conference on Computer Vision (ECCV), 734–750. https://arxiv.org/abs/1808.01244
  122. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision, 10012–10022. https://arxiv.org/abs/2103.14030
  123. Tian, Z., Shen, C., Chen, H., & He, T. (2019). Fcos: Fully convolutional one-stage object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision, 9627–9636. https://arxiv.org/abs/1904.01355
  124. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. Proceedings of the IEEE/CVF International Conference on CVPR, 6569–6578. https://arxiv.org/abs/1904.08189
  125. Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on CVPR, 10781–10790. https://arxiv.org/abs/1911.09070
  126. Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., Hu, X., Lu, T., Lu, L., Li, H., & others. (2023). Internimage: Exploring large-scale vision foundation models with deformable convolutions. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14408–14419. https://arxiv.org/abs/2211.05778
  127. Li, Y., Mao, H., Girshick, R., & He, K. (2022). Exploring plain vision transformer backbones for object detection. European Conference on Computer Vision, 280–296. https://arxiv.org/abs/2203.16527
  128. Tian, Y., Ye, Q., & Doermann, D. (2025). Yolov12: Attention-centric real-time object detectors. ArXiv Preprint ArXiv:2502.12524. https://arxiv.org/abs/2502.12524
  129. Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., Liu, Y., & Chen, J. (2024). Detrs beat yolos on real-time object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16965–16974. https://arxiv.org/abs/2304.08069
  130. Xiang, Y., Choi, W., Lin, Y., & Savarese, S. (2015). Data-driven 3d voxel patterns for object category recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1903–1911. https://ieeexplore.ieee.org/document/7298800
  131. Xiang, Y., Choi, W., Lin, Y., & Savarese, S. (2017). Subcategory-aware convolutional neural networks for object proposals and detection. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), 924–933. https://arxiv.org/abs/1604.04693
  132. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., & Urtasun, R. (2016). Monocular 3d object detection for autonomous driving. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2147–2156. https://ieeexplore.ieee.org/document/7780605
  133. Mousavian, A., Anguelov, D., Flynn, J., & Kosecka, J. (2017). 3d bounding box estimation using deep learning and geometry. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7074–7082. https://arxiv.org/abs/1612.00496
  134. Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C., & Chateau, T. (2017). Deep manta: A coarse-to-fine many-task network for joint 2d and 3d vehicle analysis from monocular image. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2040–2049. https://arxiv.org/abs/1703.07570
  135. Kundu, A., Li, Y., & Rehg, J. M. (2018). 3d-rcnn: Instance-level 3d object reconstruction via render-and-compare. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3559–3568. https://ieeexplore.ieee.org/document/8578473
  136. Xu, B., & Chen, Z. (2018). Multi-level fusion based 3d object detection from monocular images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2345–2353. https://ieeexplore.ieee.org/document/8578347/
  137. Qin, Z., Wang, J., & Lu, Y. (2019). Monogrnet: A geometric reasoning network for monocular 3d object localization. Proceedings of the AAAI Conference on Artificial Intelligence, 33. https://arxiv.org/abs/1811.10247
  138. Wang, S., & Zheng, J. (2023). MonoSKD: General distillation framework for monocular 3D object detection via Spearman correlation coefficient. ArXiv Preprint ArXiv:2310.11316. https://arxiv.org/abs/2310.11316
  139. Xu, J., Peng, L., Cheng, H., Li, H., Qian, W., Li, K., Wang, W., & Cai, D. (2023). Mononerd: Nerf-like representations for monocular 3d object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision, 6814–6824. https://arxiv.org/abs/2308.09421
  140. Yan, L., Yan, P., Xiong, S., Xiang, X., & Tan, Y. (2024). Monocd: Monocular 3d object detection with complementary depths. IEE, 10248–10257. https://arxiv.org/abs/2404.03181
  141. Chen, X., Kundu, K., Zhu, Y., Berneshawi, A. G., Ma, H., Fidler, S., & Urtasun, R. (2015). 3d object proposals for accurate object class detection. Advances in Neural Information Processing Systems, 28. https://arxiv.org/abs/1608.07711
  142. Wang, Y., Chao, W.-L., & al., E. (2019). Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8445–8453. https://arxiv.org/abs/1812.07179
  143. Li, P., Chen, X., & Shen, S. (2019). Stereo r-cnn based 3d object detection for autonomous driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://arxiv.org/abs/1902.09738
  144. Chen, Y., Liu, S., Shen, X., & Jia, J. (2020). Dsgn: Deep stereo geometry network for 3d object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://arxiv.org/pdf/2001.03398
  145. Frøysa, T. D. (2018). Perception for an Autonomous Racecar [Master's thesis]. NTNU.
  146. Qie, L., Gong, J., & al., E. (2020). Cone detection and location for formula student driverless race. 2019 6th International Conference on Dependable Systems and Their Applications, 440–444.
  147. Gonzalez, R. (2020). Improved cone detection system with NN for a Formula Student car [B.S. thesis]. Universitat Politècnica de Catalunya.
  148. Dhall, A. (2018). Real-time 3D pose estimation with a monocular camera using deep learning and object priors on an autonomous racecar. ArXiv Preprint ArXiv:1809.10548.
  149. Minorello, F. (2025). A Stereo Vision SLAM Front-End for the Formula Student Driverless Competition [Master's thesis]. University of Padova.
  150. Quigley, M., Conley, K., & al., E. (2009). ROS: an open-source Robot Operating System. ICRA Workshop on Open Source Software, 3, 5. http://lars.mec.ua.pt/public/LAR%20Projects/BinPicking/2016_RodrigoSalgueiro/LIB/ROS/icraoss09-ROS.pdf
  151. Wang, Y., Guizilini, V. C., Zhang, T., Wang, Y., Zhao, H., & Solomon, J. (2022). Detr3d: 3d object detection from multi-view images via 3d-to-2d queries. Conference on Robot Learning, 180–191. https://arxiv.org/abs/2110.06922
  152. Liu, Y., Wang, T., Zhang, X., & Sun, J. (2022). Petr: Position embedding transformation for multi-view 3d object detection. European Conference on Computer Vision, 531–548. https://arxiv.org/abs/2203.05625
  153. Li, Z., Wang, W., & al., E. (2024). Bevformer: learning bird’s-eye-view representation from lidar-camera via spatiotemporal transformers. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://arxiv.org/abs/2203.17270
  154. Liu, H., Teng, Y., Lu, T., Wang, H., & Wang, L. (2023). Sparsebev: High-performance sparse 3d object detection from multi-camera videos. Proceedings of the IEEE/CVF International Conference on Computer Vision, 18580–18590. https://arxiv.org/abs/2308.09244
  155. Ji, H., Ni, T., Huang, X., Luo, T., Zhan, X., & Chen, J. (2025). RoPETR: Improving Temporal Camera-Only 3D Detection by Integrating Enhanced Rotary Position Embedding. ArXiv Preprint ArXiv:2504.12643. https://arxiv.org/abs/2504.12643
  156. Liu, Z., Ye, X., Tan, X., Ding, E., & Bai, X. (2023). Stereodistill: Pick the cream from lidar for distilling stereo-based 3d object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 1790–1798. https://arxiv.org/pdf/2301.01615
  157. Guo, X., Shi, S., Wang, X., & Li, H. (2021). Liga-stereo: Learning lidar geometry aware representations for stereo-based 3d detector. Proceedings of the IEEE/CVF International Conference on Computer Vision, 3153–3163. https://arxiv.org/abs/2108.08258
  158. Liu, Y., Wang, L., & Liu, M. (2021). Yolostereo3d: A step back to 2d for efficient stereo 3d detection. 2021 IEEE International Conference on Robotics and Automation (ICRA), 13018–13024. https://arxiv.org/abs/2103.09422
  159. Brazil, G., & Liu, X. (2019). M3d-rpn: Monocular 3d region proposal network for object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision, 9287–9296. https://arxiv.org/abs/1907.06038
  160. Liu, Z., Wu, Z., & Tóth, R. (2020). Smoke: Single-stage monocular 3d object detection via keypoint estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 996–997. https://arxiv.org/abs/2002.10111
  161. Limaye, A., Mathew, M., & al., E. (2020). SS3D: Single shot 3D object detector. ArXiv Preprint ArXiv:2004.14674. https://arxiv.org/abs/2004.14674
  162. Zhang, Y., Lu, J., & Zhou, J. (2021). Objects are different: Flexible monocular 3d object detection. Proceedings of the IEEE/CVF Conference on CVPR, 3289–3298. https://arxiv.org/abs/2104.02323
  163. Chong, Z., & Ma, X. andE. al. (2022). Monodistill: Learning spatial features for monocular 3d object detection. ArXiv Preprint ArXiv:2201.10830. https://arxiv.org/pdf/2201.10830
  164. Simonelli, A., Bulo, S. R., & al., E. (2019). Disentangling monocular 3d object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision, 1991–1999. https://arxiv.org/abs/1905.12365
  165. Ma, X., & Wang, Z. andE. al. (2019). Accurate monocular 3d object detection via color-embedded 3d reconstruction for autonomous driving. Proceedings of the IEEE/CVF International Conference on Computer Vision, 6851–6860.
  166. Choi, H. M., Kang, H., & Hyun, Y. (2019). Multi-view reprojection architecture for orientation estimation. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2357–2366. https://ieeexplore.ieee.org/document/9022190
  167. Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4490–4499.
  168. Zhou, Y., & Tuzel, O. (2018). VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. Proceedings of the IEEE Conference on CVPR, 4490–4499. https://arxiv.org/abs/1611.08069
  169. Simon, M., Milz, S., Amende, K., & Gross, H.-M. (2018). Complex-yolo: Real-time 3d object detection on point clouds. ArXiv Preprint ArXiv:1803.06199. https://arxiv.org/abs/1803.06199
  170. Beltrán, J., Guindel, C., & al., E. (2018). Birdnet: a 3d object detection framework from lidar information. 2018 21st International Conference on Intelligent Transportation Systems, 3517–3523. https://arxiv.org/abs/1805.01195
  171. Yang, B., Luo, W., & Urtasun, R. (2018). PIXOR: Real-time 3D Object Detection from Point Clouds. Proceedings of the IEEE Conference on CVPR, 7652–7660. https://arxiv.org/abs/1902.06326
  172. Wang, D. Z., & Posner, I. (2015). Voting for voting in online point cloud object detection. Robotics: Science and Systems, 1, 10–15. https://www.roboticsproceedings.org/rss11/p35.pdf
  173. Yan, Y., Mao, Y., & Li, B. (2018). SECOND: Sparsely Embedded Convolutional Detection. Sensors, 18, 3337. https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
  174. Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., & Beijbom, O. (2019). PointPillars: Fast Encoders for Object Detection from Point Clouds. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12697–12705. https://arxiv.org/abs/1812.05784
  175. Chen, Q., Sun, L., Wang, Z., Jia, K., & Yuille, A. (2020). Object as hotspots: An anchor-free 3d object detection approach via firing of hotspots. Computer Vision–ECCV 2020: 16th European Conference, 68–84. https://arxiv.org/abs/1912.12791
  176. Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., & Li, H. (2021). Voxel r-cnn: Towards high performance voxel-based 3d object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 1201–1209. https://arxiv.org/abs/2012.15712
  177. Mao, J., Xue, Y., Niu, M., Bai, H., Feng, J., Liang, X., Xu, H., & Xu, C. (2021). Voxel transformer for 3d object detection. Proceedings of the IEEE/CVF International Conference on CVPR, 3164–3173. https://arxiv.org/abs/2109.02497
  178. Wu, H., & al., E. (2023). Transformation-equivariant 3d object detection for autonomous driving. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 2795–2802. https://arxiv.org/abs/2211.11962
  179. Yang, Z., Sun, Y., Liu, S., Shen, X., & Jia, J. (2019). Std: Sparse-to-dense 3d object detector for point cloud. Proceedings of the IEEE/CVF International Conference on CVPR, 1951–1960. https://arxiv.org/abs/1907.10471
  180. Yang, Z., Sun, Y., Liu, S., & Jia, J. (2020). 3dssd: Point-based 3d single stage object detector. Proceedings of the IEEE/CVF Conference on CVPR, 11040–11048. https://arxiv.org/abs/2002.10187
  181. Pan, X., Xia, Z., Song, S., Li, L. E., & Huang, G. (2021). 3d object detection with pointformer. Proceedings of the IEEE/CVF Conference on CVPR, 7463–7472. https://arxiv.org/abs/2012.11409
  182. Zhang, Y., Hu, Q., Xu, G., Ma, Y., Wan, J., & Guo, Y. (2022). Not all points are equal: Learning highly efficient point-based detectors for 3d lidar point clouds. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18953–18962. https://arxiv.org/abs/2203.11139
  183. Chen, Y., Liu, S., Shen, X., & Jia, J. (2019). Fast point r-cnn. Proceedings of the IEEE/CVF International Conference on Computer Vision, 9775–9784. https://arxiv.org/abs/1908.02990
  184. Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., & Li, H. (2020). Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10529–10538. https://arxiv.org/abs/1912.13192
  185. Hu, J. S. K., Kuai, T., & Waslander, S. L. (2022). Point density-aware voxels for lidar 3d object detection. Proceedings of the IEEE/CVF Conference, 8469–8478. https://arxiv.org/abs/2203.05662
  186. Wang, Z., & Jia, K. (2019). Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1742–1749. https://arxiv.org/abs/1903.01864
  187. Qi, C. R., Liu, W., Wu, C., Su, H., & Guibas, L. J. (2018). Frustum pointnets for 3d object detection from rgb-d data. Proceedings of the IEEE Conference on CVPR, 918–927. https://arxiv.org/abs/1711.08488
  188. Paigwar, A., Sierra-Gonzalez, D., Erkent, Ö., & Laugier, C. (2021). Frustum-pointpillars: A multi-stage approach for 3d object detection using rgb camera and lidar. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2926–2933. https://arxiv.org/abs/1711.08488
  189. Vora, S., Lang, A. H., Helou, B., & Beijbom, O. (2020). Pointpainting: Sequential fusion for 3d object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4604–4612. https://arxiv.org/abs/1911.10150
  190. Wu, H., Wen, C., Shi, S., Li, X., & Wang, C. (2023). Virtual sparse convolution for multimodal 3d object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 21653–21662. https://arxiv.org/abs/2303.02314
  191. Pang, S., Morris, D., & Radha, H. (2020). CLOCs: Camera-LiDAR object candidates fusion for 3D object detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 10386–10393. https://arxiv.org/abs/2009.00784
  192. Pang, S., Morris, D., & Radha, H. (2022). Fast-CLOCs: Fast camera-LiDAR object candidates fusion for 3D object detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 187–196. https://openaccess.thecvf.com/content/WACV2022/papers/Pang_Fast-CLOCs_Fast_Camera-LiDAR_Object_Candidates_Fusion_for_3D_Object_Detection_WACV_2022_paper.pdf
  193. Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-view 3d object detection network for autonomous driving. Proceedings of the IEEE Conference on CVPR, 1907–1915. https://arxiv.org/abs/1611.07759
  194. Ku, J., Mozifian, M., Lee, J., Harakeh, A., & Waslander, S. L. (2018). Joint 3d proposal generation and object detection from view aggregation. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1–8. https://arxiv.org/abs/1712.02294
  195. Liang, M., Yang, B., Wang, S., & Urtasun, R. (2018). Deep continuous fusion for multi-sensor 3d object detection. Proceedings of the European Conference on Computer Vision (ECCV), 641–656. https://openaccess.thecvf.com/content_ECCV_2018/papers/Ming_Liang_Deep_Continuous_Fusion_ECCV_2018_paper.pdf
  196. Liang, M., Yang, B., Chen, Y., Hu, R., & Urtasun, R. (2019). Multi-task multi-sensor fusion for 3d object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7345–7353. https://arxiv.org/abs/2012.12397
  197. Huang, T., Liu, Z., Chen, X., & Bai, X. (2020). Epnet: Enhancing point features with image semantics for 3d object detection. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16, 35–52. https://arxiv.org/abs/2007.08856
  198. Bai, X., Hu, Z., Zhu, X., Huang, Q., Chen, Y., Fu, H., & Tai, C.-L. (2022). Transfusion: Robust lidar-camera fusion for 3d object detection with transformers. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1090–1099. https://arxiv.org/abs/2203.11496
  199. Chen, X., Zhang, T., Wang, Y., Wang, Y., & Zhao, H. (2023). Futr3d: A unified sensor fusion framework for 3d detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 172–181. https://arxiv.org/abs/2203.10642
  200. Cândido, B., Santos, N. P., Moutinho, A., & Zacchi, J.-V. (2025). Uncrewed Ground Vehicles in Military Operations: Lessons Learned from Experimental Exercises. 2025 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 21–26. https://ieeexplore.ieee.org/document/10970121
  201. Wang, Y., Yang, B., Hu, R., Liang, M., & Urtasun, R. (2021). PLUMENet: Efficient 3D object detection from stereo images. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3383–3390.
  202. Shi, S., Wang, X., & Li, H. (2019). Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 770–779. https://arxiv.org/abs/1812.04244
  203. Shi, S., Wang, Z., Shi, J., Wang, X., & Li, H. (2020). From points to parts: 3d object detection from point cloud with part-aware and part-aggregation network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(8), 2647–2664. https://arxiv.org/abs/1907.03670
  204. He, C., Zeng, H., Huang, J., Hua, X.-S., & Zhang, L. (2020). Structure aware single-stage 3d object detection from point cloud. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11873–11882.
  205. Sindagi, V. A., Zhou, Y., & Tuzel, O. (2019). Mvx-net: Multimodal voxelnet for 3d object detection. 2019 International Conference on Robotics and Automation (ICRA), 7276–7282. https://arxiv.org/abs/1904.01649